Sunday, November 16, 2014

Eugenio Beltramy and Non-Euclidian Geometry

Eugenio Beltrami (1835-1900)
On November 16, 1835, Italian mathematician Eugenio Beltrami was born. He is most notable for his work concerning differential geometry and mathematical physics. His work was noted especially for clarity of exposition. He was the first to prove consistency of non-Euclidean geometry by modeling it on a surface of constant curvature, the pseudosphere.

Eugenio Beltrami was born in Cremona in Lombardy, then a part of the Austrian Empire, and now part of Italy. The son of an artist who painted miniatures, young Eugenio certainly inherited artistic talents from his family, but in his case in addition to the mathematical talents he would acquire, it was music rather than painting that became important in his life. He began studying mathematics at University of Pavia in 1853, but was expelled from Ghislieri College in 1856 due to his political opinions. During this time he was taught and influenced by Francesco Brioschi, who had been appointed as professor of applied mathematics at the University of Pavia the year before Beltrami began his studies. Beltrami had to discontinue his studies because of financial hardship and spent the next several years as a secretary working for the Lombardy–Venice railroad company first in Verona and later in Milan.

While Beltrami was in Milan the Kingdom of Italy was established in 1861, an important political event which did much to invigorate the academic scene in Italy. Beltrami began to work hard at his mathematical studies again and in 1862 he published his first paper. As a result, he was appointed to the University of Bologna as a professor in 1862. In 1870, a new University of Rome was set up in the new Italian capital and Beltrami was appointed to the chair of rational mechanics there in 1873. After three years in Rome, Beltrami moved to Pavia to take up the chair of mathematical physics there. However, Beltrami returned to Rome in 1891 and spent his last years teaching there.[1] He became the president of the Accademia dei Lincei in 1898 and, the following year, a senator of the kingdom. A lover of music, Beltrami was interested in the relationship between mathematics was interested in the relationship between mathematics and music.[2]

M.C.Escher, Circle Limit IV, illustrating hyperbolic geometry
In 1868 Beltrami published two memoirs dealing with consistency and interpretations of non-Euclidean geometry of Bolyai and Lobachevsky. Beltrami proposed that this geometry could be realized on a surface of constant negative curvature, a pseudosphere. For Beltrami's concept, lines of the geometry are represented by geodesics on the pseudosphere and theorems of non-Euclidean geometry can be proved within ordinary three-dimensional Euclidean space, and not derived in an axiomatic fashion, as Lobachevsky and Bolyai had done previously.

Already in 1840, Minding already considered geodesic triangles on the pseudosphere and remarked that the corresponding "trigonometric formulas" are obtained from the corresponding formulas of spherical trigonometry by replacing the usual trigonometric functions with hyperbolic functions; this was further developed by Codazzi in 1857, but apparently neither of them noticed the association with Lobachevsky's work. In this way, Beltrami attempted to demonstrate that two-dimensional non-Euclidean geometry is as valid as the Euclidean geometry of the space, and in particular, that Euclid's parallel postulate could not be derived from the other axioms of Euclidean geometry. It is often stated that this proof was incomplete due to the singularities of the pseudosphere, which means that geodesics could not be extended indefinitely.

In the second memoir "Fundamental theory of spaces of constant curvature", Beltrami continued this logic and gave an abstract proof of equiconsistency of hyperbolic and Euclidean geometry for any dimension. He accomplished this by introducing several models of non-Euclidean geometry that are now known as the Beltrami–Klein model, the Poincaré disk model, and the Poincaré half-plane model, together with transformations that relate them. Although today Beltrami's "Essay" is recognized as very important for the development of non-Euclidean geometry, the reception at the time was less enthusiastic. Beltrami also worked on optics, thermodynamics, elasticity, electricity and magnetism. His contributions to these topics appeared in the four-volume work, Opere Matematiche (1902-20), published posthumously.

At yovisto, you can learn more about Non-Euclidian geometry in the History of Mathematics lecture of Professor N. J. Wildberger "MathHist12 - Non-Euclidian Geometry".



References and Further Reading:
  • [1] O'Connor, John J.; Robertson, Edmund F., "Eugenio Beltrami", MacTutor History of Mathematics archive, University of St Andrews.
  • [2] Eugenio Beltrami at Complete Dictionary of Scientific Biography, 2008
Related Articles in the Blog:


If you like the daily blog posts of yovisto about the history of science, please support us by clicking on the amazon links and making your next amazon purchase via our offered links. Nevertheless, please do also support your local (real world) bookstore at the corner of the street.
Post a Comment